A Gauss—Newton method for convex composite optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gauss - Newton method for convex composite optimization 1

An extension of the Gauss-Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization of h o F under two conditions, namely h has a set of weak sharp minima, C, and there is a regular point of the inclusion F(x) E C. This result extends a similar convergence result due to Womersley (this journa...

متن کامل

A Gauss-Newton method for convex composite optimization

An extension of the Gauss{Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization of h F under two conditions, namely h has a set of weak sharp minima, C, and there is a regular point of the inclusion F(x) 2 C. This result extends a similar convergence result due to Womersley which employs ...

متن کامل

An Asynchronous Distributed Proximal Gradient Method for Composite Convex Optimization

We propose a distributed first-order augmented Lagrangian (DFAL) algorithm to minimize the sum of composite convex functions, where each term in the sum is a private cost function belonging to a node, and only nodes connected by an edge can directly communicate with each other. This optimization model abstracts a number of applications in distributed sensing and machine learning. We show that a...

متن کامل

An Asynchronous Distributed Proximal Gradient Method for Composite Convex Optimization

xi=x̄i when ‖∇xif(x̄)‖2 ≤ λBi, it follows that x̄i = x̄i if and only if ‖∇xif(x̄)‖2 ≤ λBi. Hence, hi(x̄ ∗ i ) = 0. Case 2: Suppose that i ∈ Ic := N \ I, i.e., ‖∇xif(x̄)‖2 > λBi. In this case, x̄i 6= x̄i. From the first-order optimality condition, we have ∇xif(x̄) + Li(x̄i − x̄i) + λBi x̄ ∗ i −x̄i ‖x̄i −x̄i‖2 = 0. Let si := x̄∗i −x̄i ‖x̄i −x̄i‖2 and ti := ‖x̄i − x̄i‖2, then si = −∇xif(x̄) Liti+λBi . Since ‖si‖2 = 1, i...

متن کامل

Inexact proximal stochastic gradient method for convex composite optimization

We study an inexact proximal stochastic gradient (IPSG) method for convex composite optimization, whose objective function is a summation of an average of a large number of smooth convex functions and a convex, but possibly nonsmooth, function. Variance reduction techniques are incorporated in the method to reduce the stochastic gradient variance. The main feature of this IPSG algorithm is to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 1995

ISSN: 0025-5610,1436-4646

DOI: 10.1007/bf01585997